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a b s t r a c t

A Roe-average algorithm has been derived for a granular-gas model, proposed by Goldsh-
tein and Shapiro [Goldshtein, Shapiro, Mechanics of collisional motion of granular materi-
als: Part 1. General hydrodynamic equations, J. Fluid Mech. 282 (1995) 75–114], which
contains non-conservative terms in the Euler-like hyperbolic governing equations apart
from sink terms, which arise from inelastic collision of granules and are present only in
the energy equation. The non-conservative terms introduce non-isentropic effects in
acoustic-wave propagation within granular media and they also contribute to the Ran-
kine–Hugoniot relations across a discontinuity. A Roe-average algorithm, based on the
same granular-gas model, was derived in the literature [V. Kamenetsky, A. Goldshtein,
M. Shapiro, D. Degani, Evolution of a shock wave in a granular gas, Phys. Fluids, 12
(2000) 3036–3049] which then required the implementation of a shock-fitting technique
at a discontinuity. In the present work, Roe-averaged variables have been obtained from
the Rankine–Hugoniot jump relations and the non-conservative terms have been incorpo-
rated in the numerical flux formula consistent with upwind principles associated with the
granular speed of sound. Results for unsteady one-dimensional granular flows, colliding
with a wall, demonstrate the capability of the proposed algorithm to capture strong shocks
in addition to flow features not found in molecular gases, such as a fluidized region down-
stream of the shock and a compacted solid-block region adjacent to the wall.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Flows of granular materials are encountered in many industrial-applications which store, transport or mix non-cohesive
solid particles including agriculture, mining, chemical, pharmaceutical and food processing. To facilitate transport of a bed of
solid particles, vibrations of a certain amplitude and frequency are often imparted to the conveyor unit to introduce fluid-
ization within the medium. Granular media can be difficult to handle, resulting in inefficiency and delays in many process
industries. The bulk motion of granules can be broadly subdivided into slow and fast flow regimes. In the slow flow regime,
there is constant contact among particles during their motion, which is controlled by interparticle Coulomb-frictional forces.
In contrast, the rapid flow regime involves freely moving particles which interact by fast-impact collisions. In such a case,
inter-particle transfer of momentum and kinetic energy take place during collisions and the effective transport properties
are governed by the nature of these collisions.
. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2009.08.005
mailto:duxju@hotmail.com
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


8188 H. Kamath, X. Du / Journal of Computational Physics 228 (2009) 8187–8202
Rapid granular flows, interacting through inelastic collisions, have been the subject of many experimental, theoretical and
numerical investigations which have been reviewed in [2,7] among others. Particle impacts are accompanied by kinetic en-
ergy losses, associated with surface roughness and inelastic collisions, and a constant or periodic input of mechanical energy
is required to sustain the collisional motion of moving granular media. The sources of mechanical energy could be pneumatic
pressure, externally-induced vibrations, gravity or other applied body forces involving electric or magnetic fields, among
others. Gravity force, which causes rapid shear flow of granular material down inclined surfaces, could also act as a source
of energy in one-dimensional shearless granular flows such as those induced by a vibrofluidized mechanism. The hydrody-
namic equations for modelling shear-induced rapid flows are similar to the Navier–Stokes equations in possessing viscosity
and thermal conductivity terms [8,9,12,13]. However, in one-dimensional shearless granular flows, driven by some external
source, the effects of viscosity and thermal conductivity are unimportant. Also, under moderate accelerations of the vibrating
bed, experimental evidence of shock-wave propagation was presented in [4], following a derivation of compressible hydro-
dynamic equations for rigid particles of arbitrary inelasticity and roughness in [3] based on the Chapman–Enskog solution to
the Boltzmann equation. A comprehensive study also included [5] an analytical solution of shock-wave propagation, based
on the derived Euler-like hydrodynamic equations, for asymptotically large time when the solution becomes self-similar.
Furthermore, the expansion wave problem was analysed in [6] and an analytical solution could be obtained in the dilute
granular-gas approximation. This was followed by a computational study of shock-wave propagation in a granular gas in
[10], based on Roe’s approximate Riemann solver which was derived for the associated hydrodynamic equations.

The present work was necessitated by derivation of the Roe-averaged state [10] of the hyperbolic system of mass,
momentum and energy equations for a granular gas re-derived in [3]. Firstly, the Roe-average state has been derived prop-
erly in this paper. Secondly, the energy equation now contains two types of sink terms due to inelastic collisions of granules.
One of these terms, which is proportional to the divergence of velocity, cannot be cast in a divergence form, required for the
application of many numerical schemes for hyperbolic conservation laws. This non-conservative term influences [3] the
speed of sound, which is the speed of propagation of infinitesimal disturbances in a granular gas. Not only is acoustic-wave
propagation a non-isentropic process, due to this, but the term also enters [3] the Rankine–Hugoniot jump relations across a
discontinuity. In [10], the non-conservative term was arbitrarily and alternately assigned to either the positive or negative
contributions to Roe’s interface-flux formula for one-dimensional unsteady computations. Such a treatment may not work
for multi-dimensional computations and cannot be directly extended to unstructured grids. In the present work, the non-
conservative term is uniformly incorporated into the numerical flux formula to be consistent with upwind principles asso-
ciated with the granular speed of sound. Non-conservative terms often arise in governing equations encountered in turbu-
lence modelling and the present work may be of relevance in other applications as well.

The paper has been organized in the following manner: the next section briefly presents the governing equations for
unsteady one-dimensional compressible granular flows. Sections 3 and 4 deal with Roe’s algorithm for the hyperbolic gov-
erning equations with non-conservative terms and the MUSCL-Hancock time-integration procedure, respectively. Results
for some test cases are presented in Section 5 to demonstrate the shock-capturing capability of the proposed algorithm for
granular-gas flows, in addition to resolving flow features not found in molecular gases. Section 6 contains concluding
remarks.

2. Governing equations for compressible granular flows

The unsteady, one-dimensional Euler-like governing equations for motion of a granular gas can be expressed [3,10] as
follows:
@U
@t
þ @FðUÞ

@x
þ BðUÞ @U

@x
¼ SðUÞ ð1Þ
where the matrix B contains the non-conservative terms in the energy equation arising from inelastic collisions. U is the vec-
tor of dependent variables, F is the flux vector and S is the source vector, containing gravity contributions in the momentum
and energy equations, apart from a sink term in the energy equation also due to inelastic collisions. These terms, in expanded
form, are:
U ¼
q
qu

E

264
375F ¼

qu

qu2 þ P

uðEþ PÞ

264
375B ¼

0 0 0
0 0 0
P
q u �Pq 0

264
375S ¼

0
qg

qug þ I

264
375 ð2Þ
where q is the granular-gas density, u is the velocity, P is the pressure and E is the total granular energy per unit volume,
E ¼ q�þ qu2=2 with � being the internal energy per unit mass. The terms I and P, in the energy equation, due to inelastic
collisions, are [10]:
I ¼ C0
r2

m
q2�3=2gðmÞ ð3Þ

P ¼ q�at ½C1 þ 2C2ð1þ eÞmgðmÞ� ð4Þ
gðmÞ ¼ ½1� ðm=mMÞ4mM=3��1 ð5Þ
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where r is the diameter of a particle with mass m and density qp; e is the restitution coefficient and m � q=qp, the solid frac-
tion, is the volume of solids per unit volume of the granular gas, with mM being its maximum attainable value for a prescribed
packing configuration. For closest random-packing of spheres mM ¼ 0:64 and it varies from p=6, for simple cubic, to 0.74 for
face-centered cubic packing. The parameters C0;C1;C2 and at are analytical functions of e and a roughness parameter, b, as
obtained in [3] and are defined in Appendix B. The equilibrium radial distribution function, gðmÞ, as defined in (5), is more
accurate [5] near the maximum-packing limit (even though it is singular at mM) as compared to the dilute-gas limit which
yields the following [10] equation of state for a granular gas:
P ¼ q�GðmÞ with GðmÞ � at ½1þ 2ð1þ eÞmgðmÞ� ð6Þ
Shock waves are commonly encountered in granular-gas flows since the speed of sound is extremely low compared to that of
molecular gases. Furthermore, unlike in molecular gases, the kinetic energy of random motion, which is often referred to as
granular temperature, continually decreases as a result of inelastic particle collisions. Even for a simple flow involving pres-
ervation of uniform conditions, the sink term in the energy equation, due to inelastic collisions, causes diminishing of pres-
sure with time, for non-zero granular temperature, and consequently also for the speed of sound, whereas constancy is
maintained only for density and velocity variables. It was shown in [5] that this volumetric energy-dissipation term, I (3),
leads to interesting consequences downstream of a shock due to increased particle collisions with an attendant increase
in granular-gas density. In particular, for the classical problem of shock wave generated by a moving piston, the distribution
of gas-dynamic variables between the shock and the piston is nonuniform. On the piston, a solid block comprising densely-
packed granules is formed after some time and this continuously-growing layer is separated from the shock front by a non-
uniform fluidized region. In the latter region, the granular kinetic energy is constantly diminishing, due to an increase in
inelastic non-conservative collisions downstream of the shock to the start of the solid block.

The governing Eq. (1) are not valid within the solid block due to the singularity of gðmÞ in (5) as m! mM which results in
pressure and speed of sound approaching infinity, a manifestation of rapidly decreasing compressibility of the medium. To
enable computations to be performed uniformly all the way to the piston, a granular-flow model was proposed in [10], which
switches off the energy-dissipation terms when the solids fraction, m, exceeds a cut-off value, mc , that is less than the max-
imum permissible value, mM . It was shown in [10] that, if mc was chosen sufficiently close to mM then numerical results, using
this granular-flow model, agree with the limiting analytical solution, derived in [5] for the fluidized region, valid after suf-
ficiently longtime-propagation of the shock. Furthermore, a density-dependent restitution coefficient was introduced in [10]
to account for the elastic nature of granular collisions, when their kinetic energy approaches zero, based on a cut-off
criterion:
ec ¼
e for m < mc

1 for m P mc

�
ð7Þ
A similar limiting condition was imposed on b, resulting in I and P being set to zero when the granular gas is compressed
beyond the cut-off limit, mc , so that it then reduces to a conservative gas possessing a very large speed of sound within the
solid block. Such a criterion was not imposed in [16] and hence the computations reported could be carried out only until the
start of formation of solid block at the wall. Furthermore, the granular-flow model of [16] did not contain any non-conser-
vative terms in the governing equations which ensured that acoustic-wave propagation remained an isentropic process as in
a molecular gas. However, this model did contain source terms similar to I in (2) apart from gravitational-source terms in the
momentum and energy equations, as in the present work. These gravitational-source terms also need to be set to zero within
the solid block to ensure that the governing equations reduce to a form appropriate for a conservative gas.

3. Roe’s algorithm for the non-conservative governing equations

For a hyperbolic system of conservation laws, Roe’s algorithm [14] involves solution of the homogeneous linearized gov-
erning equations:
Ut þ bAUx þ bBUx ¼ 0 ð8Þ
where the matrices bA and bB refer to A � dF=dU, the Jacobian matrix of the flux vector, and the matrix B in (2), evaluated at
the so-called Roe-averaged state, bU � bUðUL; URÞ, which is a function of the corresponding left and right states at an interface
of a computational cell. The matrix A has a complete set of eigenvectors but B does not in the present case. Furthermore, the
eigenvalues of Aþ B are:
k1 ¼ u� c; k2 ¼ u; k3 ¼ uþ c ð9Þ
where c is the speed of sound in a granular gas:
c ¼ ½ðE� qu2=2ÞGq þHG� Gu2=2�1=2 with H � ðEþ P � PÞ=q ð10Þ
This is the speed of infinitesimal disturbances, which do not propagate isentropically, and can be derived [3] by casting the
governing Eq. (1) in characteristic form. In contrast, the isentropic propagation of small-amplitude acoustic waves in a
molecular gas permits the algebraic expression for the speed of sound to be directly derived from the equation of state.
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The term P, which arises due to inelastic granular collisions, is not only responsible for non-isentropic propagation of infin-
itesimal disturbances but it also contributes to the Rankine–Hugoniot jump relations, across an isolated discontinuity of
arbitrary strength, which is involved in the determination of the Roe-average state (See Appendix A). The expression for
the speed of sound in (10) is appropriate for the prescription of Roe-averaged variables but, using (4), (6), it can be recast
in the following form:
c2 ¼ CðqÞ P
q

with CðqÞ � q
Gq

G
þ 1þ G� at ½C1 þ 2C2ð1þ eÞmgðmÞ� ð11Þ
in which the functional dependence of C only on q is revealed. It should be noted that in this expression for the sound speed,
the terms containing C1 and C2 are due to the B matrix in (1) that introduce non-isentropic effects caused by inelastic col-
lisions. The matrix of right eigenvectors, R, of Aþ B is:
R ¼
1 �2 1

u� c �2u uþ c

H� uc 2½c2=G�H� H þ uc

264
375 ð12Þ
and its inverse is:
R�1 ¼ 1
2c2

ðE� qu2=2ÞGq þ Gu2=2þ uc �uG� c G

ðE� qu2=2ÞGq þ Gu2=2� c2 �uG G

ðE� qu2=2ÞGq þ Gu2=2� uc �uGþ c G

2664
3775 ð13Þ
Jump conditions for the non-conservative granular-gas model are obtained by Goldshtein and Shapiro [4], which coincide
with the Rankine–Hugoniot conditions and there is no contribution of the energy dissipation term to the energy jump con-
dition. In the following, a jump condition for the present granular-gas model with a velocity divergent sink term is derived.
We assume that a discontinuity propagates with velocity sðx; tÞ in a sufficiently small neighborhood N, where function Uðx; tÞ
satisfies equation in the following form:
@U
@t
þ @FðUÞ

@x
þ BðUÞ @U

@x
¼ 0 ð14Þ
We also assume that weak solution Uðx; tÞ is differentiable and bounded in this neighborhood. By introducing a test function
Uðx; tÞ with support in N [21], a more general form of the jump condition could be obtained as:
sðUR � ULÞ ¼ FðURÞ � FðULÞ þ
Z UR

UL

BðUÞdU ð15Þ
where s ¼ x0ðtÞ. The additional term
R

BðUÞ normally is not included in the Rankine–Hugoniot condition for the conservation
of U across the discontinuities. It should be noticed that the velocity divergent term BðUÞ is a bounded function in N [20]:
Z UL

UR

BðUÞdU � 1
2
ðBðULÞ þ BðURÞÞðUR � ULÞ ð16Þ
Since this bounded sink term still obeys the Rankine–Hugoniot jump condition, which holds across the discontinuities with
velocity s, it can be obtained as follows:
sðUR � ULÞ ¼ FðURÞ � FðULÞ þ
1
2
ðBðULÞ þ BðURÞÞðUR � ULÞ ð17Þ
It can be inferred from (2) that the arithmetic average of the matrix representing non-conservative terms, B, will contribute
only to the energy jump condition whereas the mass and momentum jump relations have a form similar to that for a molec-
ular gas. This contribution will vanish only when P � 0 for the case e ¼ 1 ¼ jbj, which would correspond to the conservative-
gas limit. The Roe-averaged state is determined by requiring s to be an eigenvalue of the matrix combination bA þ bB, appear-
ing in the linearized system of governing equations (8), for an isolated discontinuity of arbitrary strength, which yields the
condition:
ðbA þ bBÞðUR � ULÞ ¼ FðURÞ � FðULÞ þ
1
2
ðBðULÞ þ BðURÞÞðUR � ULÞ ð18Þ
This can be decomposed further into two separate conditions by noting that terms involving P must balance out on both
sides of the above equation:
bAðUR � ULÞ ¼ FðURÞ � FðULÞ ð19Þ

bBðUR � ULÞ ¼
1
2
ðBðULÞ þ BðURÞÞðUR � ULÞ ð20Þ
The Jacobian matrix of the flux vector A � dF=dU, evaluated at the Roe-averaged state, can be determined as in [10]:
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bA ¼ 0 1 0
q̂�bGq þ bGû2=2� û2 ð2� bGÞû bG

q̂�ûbGq þ bGû3=2� bHû=q̂ �û2bG þ bH=q̂ ð1þ bGÞû
264

375 ð21Þ
where H � Eþ P is the total enthalpy per unit volume of the granular gas. The Roe-averaged matrix bA contains six variables,
q̂; û; bH; q̂�; bG and bGq, which need to be determined from (19). Also, as inferred from (2), the Roe-averaged matrix bB contains
only one variable, bP , which must be obtained from (20) assuming that q̂ and û have already been prescribed. It should be
noted that q could have been absorbed in H by introducing an alternative variable which would represent the total enthalpy
per unit mass of the granular gas. Similarly q could have also been combined with P, which then eliminates density from the
Roe-averaged variables that need to be prescribed for a non-iterative solution procedure of the under-determined system of
algebraic equations resulting from the constraints (19) and (20). Even for a molecular gas satisfying the perfect-gas law,
where the constraint on the Roe-averaged matrix completely determines the corresponding variables (which are averages
of velocity and total enthalpy per unit mass), it is advantageous to introduce a density average to simplify the form of
the linearized characteristic variable that appears in the expression for the numerical flux formula.

Roe-averages for density, velocity and total enthalpy per unit volume can be conveniently defined similar to that for a
molecular gas satisfying an arbitrary gas law [11]:
q̂ ¼ ffiffiffiffiffiffiffiffiffiffiffi
qLqR
p

û ¼ ½uL
ffiffiffiffiffi
qL
p þ uR

ffiffiffiffiffiffi
qR
p �=½ ffiffiffiffiffiqL

p þ ffiffiffiffiffiffi
qR
p � ð22ÞbH ¼ ½HL

ffiffiffiffiffiffi
qR
p þ HR

ffiffiffiffiffi
qL
p �=½ ffiffiffiffiffiqL

p þ ffiffiffiffiffiffi
qR
p � ð23Þ
It should be noted that the density weights are switched in (23), since H here is not the total enthalpy per unit mass as is
conventionally defined [11], but the two formulae are mathematically equivalent. The constraint (20) can now be directly
solved for bP (See Appendix A for derivation):
bP ¼ 1
2
PL

qR

qL
þ PR

qL

qR

� �
ð24Þ
It is easy to see that bB–ðBðULÞ þ BðURÞÞ=2 in general. With the definitions (22) and (23), the constraint (19) reduces to (please
refer to Appendix A for detailed derivation):
q̂�bGqðqR � qLÞ þ bGðPR=GR � PL=GLÞ ¼ PR � PL ð25Þ
which is one equation for the three averages q̂�; bG and bGq that leads to non-unique prescriptions. Noting that
E� qu2=2 � q�, the following averages can be prescribed as in [10]:
q̂� ¼ ½ðq�ÞL
ffiffiffiffiffiffi
qR
p þ ðq�ÞR

ffiffiffiffiffi
qL
p �=½ ffiffiffiffiffiqL

p þ ffiffiffiffiffiffi
qR
p � ð26Þ

bGq ¼
dG=dq for qR ¼ qL

½GðqRÞ � GðqLÞ�=½qR � qL� for qR–qL

�
ð27Þ
The prescription for q̂� with the switched density weights in (26) is mathematically equivalent to that for �̂, proposed for a
real gas in [11] with qe and e being internal energies defined on a unit volume and unit-mass basis, respectively. Now, (25)
can be solved for the only average that remains unspecified:
bG ¼ ½GL
ffiffiffiffiffi
qL
p þ GR

ffiffiffiffiffiffi
qR
p �=½ ffiffiffiffiffiqL

p þ ffiffiffiffiffiffi
qR
p � ð28Þ
In [10], bP has been specified as the arithmetic averages of left and right values, which is different from (24), and furthermorebG has not been prescribed at all. It should be noted that bG cannot be taken as Gðq̂Þ since such a prescription will not satisfy
the constraint (25) in general. However, specification of the Roe-averaged state in [10] will not significantly affect the accu-
racy of the results presented therein since a shock-fitting technique was employed at a discontinuity where the largest error
is expected to occur. In the present research, the derivation of the Roe-averaged state enables any gas-dynamic discontinuity
to be captured by construction since the resulting algorithm will be consistent with the associated Rankine–Hugoniot jump
relations; detailed discussion can be found in Appendix A.

The interface flux FIðUL;URÞ can be obtained from (18) and (20) by decomposing bA þ bB into positive and negative contri-
butions, at an interface of a computational cell, as follows:
bR bKþbR�1ðUR � ULÞ ¼ FðURÞ � FIðUL;URÞ þ bBUR ð29ÞbR bK�bR�1ðUR � ULÞ ¼ FIðUL;URÞ � FðULÞ � bBUL ð30Þ
where bK� are diagonal matrices containing positive and negative eigenvalues, respectively. It should be noted that in (29)
and (30) the term containing the non-hyperbolic bB matrix, which contributes only to the energy flux, has been resolved into
left and right components and allocated to the corresponding flux terms. This treatment ensures the symmetry of the two
expressions for the interface flux with an interchange of left and right states as is also the case for a molecular gas where the
non-conservative term is absent. Solving (29) and (30) for FIðUL;URÞ and averaging the two expressions yields Roe’s flux for-
mula suitable for algorithmic implementation:
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FIðUL;URÞ ¼
1
2
½FðULÞ þ FðURÞ þ bBðUL þ URÞ� �

1
2
ðbRjbKjbR�1ÞðUR � ULÞ ð31Þ
This formula reduces to FðULÞ þ bBUL for supersonic flow from left to right, based on a Mach number constructed using Roe-
averaged variables, which is consistent with the upwind principles associated with the granular speed of sound for the lin-
earized representation of the B matrix in the system of governing equations. In contrast, Roe’s flux formula, presented in [10],
alternately allocates the non-conservative term to either the positive or the negative components in (29) and (30) and the
resulting formula is not suited for multi-dimensional computations, particularly with unstructured grids. The uniform treat-
ment of the non-conservative term in (31) ensures straightforward extensions of this formula to higher dimensions, which is
beyond the scope of the current work and can be developed in the future.

At steady state, the consistency requires balancing of flux and non-conservative term at an interface:
Fn
jþ1 � Fn

j þ Bn
jþ1=2 Un

jþ1 � Un
j

� �
¼ 0 ð32Þ
which can be split into two equations by introducing flux Fn
jþ1=2:
Fn
jþ1 � Fn

jþ1=2 þ
1
2

Bn
jþ1=2 Un

jþ1 � Un
j

� �
¼ 0 ð33Þ
and
Fn
jþ1=2 � Fn

j þ
1
2

Bn
jþ1=2 Un

jþ1 � Un
j

� �
¼ 0 ð34Þ
The following expression is obtained by shifting the index of Eq. (33):
Fn
j � Fn

j�1=2 þ
1
2

Bn
j�1=2 Un

j � Un
j�1

� �
¼ 0 ð35Þ
We eliminate the term Fn
j by adding two Eqs. (34) and (35):
Fn
jþ1=2 � Fn

j�1=2 þ
1
2

Bn
jþ1=2 Un

jþ1 � Un
j

� �
þ 1

2
Bn

j�1=2 Un
j � Un

j�1

� �
¼ 0 ð36Þ
Then the non-conservative term in the linearized equation will be specified as the arithmetic average of the values at two
interfaces to ensure the consistent of the scheme.
4. MUSCL-Hancock time-integration procedure

In a finite-volume implementation of the two-step MUSCL-Hancock procedure [19], the gas-dynamic variables, averaged
over the computational cell length, are advanced using a midpoint rule in time with a piecewise linear reconstruction in
space. In the present research, source terms, due to gravity and inelastic collisions, contain gas-dynamic variables and these
must be properly represented in both steps of the time-integration procedure. The very low speed of sound in granular flows
results in Mach numbers ranging from nearly zero within the solid block to hypersonic in the uniform flow region upstream
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Fig. 1. The volume fraction of one-dimensional blast wave at time 5.48. Left: restitution coefficient e ¼ 1, right: e ¼ 0:9.
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of the shock. An upwind formulation [1,15] of source terms, valid when Roe’s algorithm is employed for the numerical fluxes,
is incorporated in the MUSCL-Hancock procedure.

In the first step of this procedure, the primitive-variable vector V ¼ ½v � 1=q;u; p�T for a computational cell j is advanced
to half-time level based on a Taylor’s series expansion:
Fig. 3.
time 0.
Vðx; tÞ ¼ Vn
j þ ðx� xjÞðVxÞnj þ ðt � tnÞðVtÞnj ð37Þ
with xj�1=2 < x < xjþ1=2 and tn
6 t 6 tnþ1=2, where ðVtÞnj � ðdV=dUÞnj ðUtÞnj and ðUtÞnj can be obtained from (1) as follows:
ðUtÞnj ¼ �
Fn

jþ1=2 � Fn
j�1=2

� �
Dx

24 35� Bn
jþ1=2

2

Un
jþ1 � Un

j

� �
Dx

0@ 1A24 35� Bn
j�1=2

2

Un
j � Un

j�1

� �
Dx

0@ 1A24 35þ Sn
j ð38Þ
The non-conservative term BUx has been represented here as the arithmetic average of the values at the two interfaces,
which is different from that proposed in [10] based on a cell-centered formulation. Furthermore, in the present research,
the term Sn

j is prescribed by projecting the source-term vector onto the eigenvectors of the Aþ B matrix at the two interfaces
and accounting for the upwind and downwind contributions, respectively, at ðj� 1=2Þ and ðjþ 1=2Þ:
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Case 1: inelastic and rough granular gas, accelerated under the action of gravity, hits a wall at rest (at right boundary) when the packed bed forms at
23.

Fig. 2. Unsteady one-dimensional granular flows colliding with a wall.



Fig. 4.
time 0.
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Sn
j �

1
2
½I þ jAþ BjðAþ BÞ�1�nj�1=2Sn

j�1=2 þ
1
2
½I � jAþ BjðAþ BÞ�1�njþ1=2Sn

jþ1=2 ð39Þ
It should be noted that all interface quantities in (38) and (39) are calculated using Roe-averaged variables. The limited gra-
dients ðVxÞnj in (37) are obtained by first using a min-mod limiter [18] on the primitive variables ½v ;u; p�T and then differen-
tiating the equation of state (6) to determine the limited gradient of the specific volume. This limiting procedure is more
robust for hypersonic flows where the internal energy contribution to the total energy can be very small compared to the
kinetic energy contribution.

The second-step of the MUSCL-Hancock procedure is the time-centered representation of (1) as follows:
Unþ1
j � Un

j

� �
Dt

¼ ðUtÞnþ1=2
j ð40Þ
where ðUtÞnþ1=2
j is obtained analogous to (38) by evaluating all variables at the half-time level, using (37) for the determina-

tion of interface and cell-centered values at t ¼ tnþ1=2, including those appearing in the source terms of (39).
The boundary conditions are implemented by the ghost cell approach where all the primitive variables are calculated by

linearly extrapolating the known quantities from the corresponding cells at inlet and outlet. And the boundary condition of
the wall, is treated as a ’mirror’ cell, with the same values of volume fraction and pressure as the interior cell, but with oppo-
site velocities.
5. Results and discussion

In this section, we attempt to testify the reliability of the above Roe-averaged algorithm for solving the granular model
with dissipation term. Some numerical experiments are performed and presented in the following.
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Case 1: inelastic and rough granular gas, accelerated under the action of gravity, hits a wall at rest (at right boundary) when the packed bed forms at
59.
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5.1. Tests of one-dimensional blast waves

We consider a Rimmen problem constructed by Serna and Marquina [17] to verify the Roe-average algorithm for a gran-
ular-flow model in this test case. The predicted results are computed with the non-divergent sink term P ¼ 0, coefficients
at ¼ 4=3 and C0 ¼ �

ffiffiffiffiffiffiffiffiffi
p=2

p
a3=2

t ð1� e2Þ to let the dissipation term I to be consistent with the Haff’s cooling law in [17]. The
initial left and right states are:
Fig. 5.
time 0.
VL ¼
1=q

u

P

264
375 ¼ 1=44:5

0:698
3:528

264
375 ð41Þ
and
VR ¼
1=q

u

P

264
375 ¼ 1=50

0
0:571

264
375 ð42Þ
The total length is 10 cm with a grid of 1000 cells and the initial discontinuity is located in the middle. The Courant–Fried-
richs–Lewy (CFL) is restricted under a constant which is expressed as ðjuj þ cÞmaxDt=Dx and the CFL number is equal to 0.8 in
the blast wave case. The structure, consisted of shock, contact discontinuity and shock is predicted with restitution coeffi-
cients e ¼ 1, where the dissipation term I vanishes and e ¼ 0:9, where I is switched on. The numerical results in Fig. 1 behave
well, compared with Serna and Marquina’s [17] on the same mesh.
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Case 2: inelastic and rough granular gas, accelerated under the action of gravity, hits a wall at rest (at right boundary) when the packed bed forms at
14.
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5.2. Tests of one-dimensional granular flows colliding with a wall

The capability of the above algorithm to capture strong shocks is now demonstrated by another two test cases which de-
scribe the behaviour of unsteady one-dimensional granular flows colliding with a wall under various physical situations. In
Fig. 2, it shows the basic concept of particles, which have uniform diameter with r ¼ 0:1 moving randomly toward the wall
under the influence of gravity accelerated in x direction (perpendicular to the wall). The finite length from the inlet to the
wall is set to be 10 cm with a grid of 1000 cells for numerical experiments and the number of CFL criterion is equal to
0.5. In this section, we focus only on cases with an external energy source, provided by gravity, where the gravity acceler-
ation g ¼ 9:8 m=s2, but without consideration of drag force. Initial values are derived from reference [16] with volume frac-
tion m ¼ 0:018 and speed of sound c ¼ 9 m=s. And other values, calculated from the above quantities are
V ¼ ½1=q;u; P�T ¼ ½1=34:37;18;1556:89�T initially. The dissipation term will disappear when mc is no less than 0.635 as the
particles pack near the wall. The other parameters in the dissipation term and non-divergent term could be calculated with
the equations given in Appendix B.
5.2.1. Test 1 without non-divergent term
In Case 1 (Figs. 3 and 4), the restitution coefficient e ¼ 0:97, and roughness b ¼ 0:92849. The loss of kinetic energy in the

granular-gas approaches to zero when the absolute values of restitution e and roughness b are close to unity, corresponding
to the conservative-gas limit. The contribution of the non-divergent sink term, P, vanishes, reducing the complexity of this
case both mathematically and physically. Fig. 4 indicates that there is a region at the wall where the density of granular gas is
equal to qcut , and the velocity vanishes where the particles are blocked. When the densely packed bed is formed, Mach num-
bers are small and the volumetric dissipation stops at the solid block. The values of internal energy per unit mass are not as
large as in other regions because the contribution of total energy per unit volume is small. Some disturbances are observed in
the pressure distribution, called pressure waves [10], at the packed bed.
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Fig. 6. Case 2: inelastic and rough granular gas, accelerated under the action of gravity, hits a wall at rest (at right boundary) when the packed bed forms at
time 0.7.



Fig. 7. Pressure time history from 0 to 10 cm.
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The average value of pressure at the fluidized region increases and the speed of sound decreases as the shock advances.
The level of internal energy tends to zero because more kinetic energy is supplied to the particle flow, to compensate for the
energy dissipation due to inelastic collisions, which also leads the decreasing of pressure. However, density of particles keeps
its initial values at the upstream of shock front. The results in Fig. 3 coincides well with those simulated by Serna and Mar-
quina [16]. The cut-off point, mcut , is not considered in their model and neither is the non-divergent sink term, P, whereas this
term will play a role during the computation in the following case.

5.2.2. Test 2 with non-divergent term
The non-divergent sink term is switched on in Case 2 (Figs. 5 and 6). The parameters of restitution and roughness are

e ¼ 0:9 and b ¼ �0:5566, and both dissipation and gravity terms are active. In contrast to the ideal gas, the spatial distribu-
tion of gas-dynamic parameters between the wall and the shock is nonuniform due to the volumetric kinetic energy dissi-
pation (term I in the conservation equations). When granular density falls below the cutoff level or exceeds it, volumetric
dissipation starts or stops, respectively [10]. Hence, the volumetric dissipation term vanishes at the packed bed and distri-
butions of density and velocity are uniform.

Some flow features were not reported in the previous work, such as the fluidized region downstream of the shock and the
compacted solid-block region adjacent to the wall. The advent results show that pressure oscillates in various frequencies at
the packed bed region. Dominant wavelength, measured directly from Fig. 4, is around 2.4 cmin the solid block (densely
packed bed) for the first case. The wavelength at the fluidized region (from shock front to the packed bed) is 0.5 cm. The sec-
ond case has higher frequency and the wavelengths are about 1:8 cm (solid region) and 0:3 cm (fluidized region) since the
dissipation term induces more energy losses in this case. Pressure in the fluidized region climbs with higher frequency oscil-
lations compared to the solid block, due to the kinetic energy losses. One can observe the invariable length of the fluidized
zone from Fig. 7. In case 2, the length of the fluidized region is 1:6 cm, which is compared well with the analytical result in
[5]. Also, the speed of the shock becomes faster following an initial transient, especially in case 2, and will ultimately ap-
proach some value [5], since shock speed is independent of e and b at the packed solid bed. The shocks in the cases influenced
by gravity become stronger with time whereas the cases without gravity exhibit similar behaviour at various times in the
entire fluidized region.

6. Conclusion

A numerical algorithm for the computation of granular layer parameters arising in a granular gas is developed. To imple-
ment this technique a Roe-type solution to the Rimmen problem is applied. The proposed algorithm enables to obtain solu-
tions for all stages of the shock wave evolution. The governing equations proposed here assume that volumetric dissipation
vanishes when the granular gas volume fraction becomes larger than some cutoff level. In the packed bed region pressure
oscillates in various frequencies but a dominant wavelength can be found for each case. Lower frequency oscillations occur
in the solid block relative to those in the fluidized region.

Stable and accurate results for a granular gas, colliding with a wall, are obtained by the advent Roe algorithm for hyper-
bolic equations with non-conservative terms and the MUSCL-Hancock time-integration procedure. The Roe-averaged state
derived in [10] will not significantly affect the accuracy of the results presented therein since a shock-fitting technique was
employed at a discontinuity where the largest error is expected to occur. But the Roe-averaged state applied now enables any
gas-dynamic discontinuity to be captured by construction since the resulting algorithm is consistent with the associated
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Rankine–Hugoniot jump relations. Results for nonzero initial velocity case show stability and capability to capture shocks,
compared to those given in [16] under the same conditions (shocks captured at time 0.23 in Case 1). In this work, the non-
conservative term is incorporated in the numerical flux formula to be consistent with upwind principles associated with the
granular speed of sound. A one-dimensional test case was analyzed and demonstrated the validity and accuracy of the ad-
vent approach to capture strong shocks with the flow features of a fluidized region downstream of the shock and a com-
pacted solid-block region adjacent to the wall. Finally, non-conservative terms often arise in governing equations
encountered in turbulence modelLing and the present work may be of relevance in such applications as well. The future
work will be to develop this granular-gas model into multi-dimension. The above Roe-averaged scheme is also interested
to be investigated in two-phase transient flow models.
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Appendix A. Roe-averages for the granular-gas model

The Eq. (19) can be expanded using (21) and (2) with appropriate left and right states:
ðq̂�bGq þ bGû2=2� û2ÞðqR � qLÞ þ ð2� bGÞûðqRuR � qLuLÞ þ bGðER � ELÞ ¼ ðqRu2
R � qLu2

L Þ þ ðPR � PLÞ ð43Þ
A.1. Consistency check in the absence of G

Dropping the terms containing G from Eq. (43) results in a quadratic equation for velocity û. It can be shown that the solu-
tion of the resulting quadratic equation returns the Roe-average for u.
ðqR � qLÞû2 � 2ðqRuR � qLuLÞûþ ðqRu2
R � qLu2

L Þ ¼ 0 ð44Þ
The solutions to this quadratic equation are:
û ¼
2ðqRuR � qLuLÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðqRuR � qLuLÞ2 � 4ðqR � qLÞðqRu2

R � qLu2
L Þ

q
2ðqR � qLÞ
After expanding the terms inside the square root, canceling the like terms and rewriting the denominator we get:
û ¼ ðqRuR � qLuLÞ �
ffiffiffiffiffiffiqR
p ffiffiffiffiffiqL
p ðuR � uLÞ

ð ffiffiffiffiffiffiqR
p 2 � ffiffiffiffiffiqL

p 2Þ
This can be rewritten as:
û ¼ ð
ffiffiffiffiffiffiqR
p ffiffiffiffiffiffiqR
p

uR �
ffiffiffiffiffiqL
p ffiffiffiffiffiqL
p

uLÞ � ð
ffiffiffiffiffiffiqR
p ffiffiffiffiffiqL
p

uR �
ffiffiffiffiffiffiqR
p ffiffiffiffiffiqL
p

uLÞ
ð ffiffiffiffiffiffiqR
p � ffiffiffiffiffiqL

p Þð ffiffiffiffiffiffiqR
p þ ffiffiffiffiffiqL

p Þ
Choosing the one that yields positive root and re-grouping the terms:
û ¼
ffiffiffiffiffiffiqR
p ffiffiffiffiffiffiqR
p

uR �
ffiffiffiffiffiqL
p ffiffiffiffiffiffiqR
p

uR �
ffiffiffiffiffiqL
p ffiffiffiffiffiqL
p

uL þ
ffiffiffiffiffiffiqR
p ffiffiffiffiffiqL
p

uL

ð ffiffiffiffiffiffiqR
p � ffiffiffiffiffiqL

p Þð ffiffiffiffiffiffiqR
p þ ffiffiffiffiffiqL

p Þ
which yields the Roe-average for u
û ¼
ffiffiffiffiffiffiqR
p

uR þ
ffiffiffiffiffiqL
p

uLffiffiffiffiffiffiqR
p þ ffiffiffiffiffiqL

p

A.2. Derivation of Eq. (25)

Terms containing û in Eq. (43) can be rearranged as below:
q̂�bGq þ
bG
2
� 1

 !bu2

" #
ðqR � qLÞ þ ð2� bGÞûðqRuR � qLuLÞ þ bGðER � ELÞ ¼ qRu2

R � qLu2
L

� 	
þ ðPR � PLÞ ð45Þ
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Above expression is rewritten in order to simplify as below:
q̂�bGqðqR � qLÞ þU ¼ ðPR � PLÞ ð46Þ
where U is given as:
U ¼ ð2� bGÞ �û2

2
ðqR � qLÞ þ ûðqRuR � qLuLÞ

� �
þ bGðER � ELÞ � qRu2

R � qLu2
L

� 	
ð47Þ
Using the expression for û from Eq. (22) and recognising:
ðqR � qLÞ ¼ ð
ffiffiffiffiffiffi
qR
p � ffiffiffiffiffi

qL
p Þð ffiffiffiffiffiffiqR

p þ ffiffiffiffiffi
qL
p Þ ð48Þ
the above expression (47) can be re-written as:
U ¼ ð2� bGÞ �1
2


 � ðuL
ffiffiffiffiffiqL
p þ uR

ffiffiffiffiffiffiqR
p Þ2

ð ffiffiffiffiffiqL
p þ ffiffiffiffiffiffiqR

p Þ2
ð ffiffiffiffiffiffiqR
p � ffiffiffiffiffi

qL
p Þð ffiffiffiffiffiffiqR

p þ ffiffiffiffiffi
qL
p Þ þ uL

ffiffiffiffiffiqL
p þ uR

ffiffiffiffiffiffiqR
pffiffiffiffiffiqL

p þ ffiffiffiffiffiffiqR
p


 �
ðqRuR � qLuLÞ

" #

þ bGðER � ELÞ � qRu2
R � qLu2

L

� 	
¼ ð2� bGÞ

2ð ffiffiffiffiffiqL
p þ ffiffiffiffiffiffiqR

p Þ � qLu2
L þ qRu2

R þ 2
ffiffiffiffiffi
qL
p ffiffiffiffiffiffi

qR
p

uLuR
� 	

ð ffiffiffiffiffiffiqR
p � ffiffiffiffiffi

qL
p Þ

�
þ 2ðuL

ffiffiffiffiffi
qL
p þ uR

ffiffiffiffiffiffi
qR
p ÞðqRuR � qLuLÞ� þ bGðER � ELÞ � qRu2

R � qLu2
L

� 	

Expanding,
U ¼ 1�
bG
2

 !
1ffiffiffiffiffiqL

p þ ffiffiffiffiffiffiqR
p


 �
�qL

ffiffiffiffiffiffi
qR
p

u2
L � qR

ffiffiffiffiffiffi
qR
p

u2
R � 2

ffiffiffiffiffi
qL
p

qRuLuR þ qL
ffiffiffiffiffi
qL
p

u2
L þ qR

ffiffiffiffiffi
qL
p

u2
R þ 2

ffiffiffiffiffiffi
qR
p

qLuLuR
�

þ 2
ffiffiffiffiffi
qL
p

qRuLuR � 2
ffiffiffiffiffi
qL
p

qLu2
L þ 2

ffiffiffiffiffiffi
qR
p

qRu2
R � 2

ffiffiffiffiffiffi
qR
p

qLuLuR

þ bGðER � ELÞ � qRu2

R � qLu2
L

� 	

After cancellations, we are left with the following:
U ¼ 1�
bG
2

 !
1ffiffiffiffiffiqL

p þ ffiffiffiffiffiffiqR
p


 �
ð ffiffiffiffiffiqL
p þ ffiffiffiffiffiffi

qR
p Þ qRu2

R � qLu2
L

� 	� 
þ bGðER � ELÞ � qRu2

R � qLu2
L

� 	
ð49Þ
This can further be simplified which results in the following expression:
U ¼ bG ER �
1
2
qRu2

R


 �
� EL �

1
2
qLu2

L


 �� �
ð50Þ
Recall E ¼ q�þ qu2=2 and the equation of state for granular gas (6) this expression (50) becomes:
U ¼ bG PR

GR
� PL

GL


 �
ð51Þ
Combining Eqs. (46) and (51) one can obtain Eq. (25):
bq�bGqðqR � qLÞ þ bG PR

GR
� PL

GL


 �
¼ PR � PL
If qL ¼ qR, the following equations can be derived:
GL � GðqLÞ ¼ GR � GðqRÞ ð52Þ
Then, the both sides of Eq. (25) are equal. If qL–qR;G can be solved with prescribed Roe-averages q� and Gq. It should be
noted that the second Eq. (43), expanded from (19) is consistent with the jump condition.

A.3. Consistency of the jump conditions with the proposed algorithm

The terms, containing bG in Eq. (43) are:
bGq
bE � q̂û2

2


 �
þ û2

bG
2

" #
ðqR � qLÞ � ûbGðqRuR � qLuLÞ þ bGðER � ELÞ ¼ PR � PL ð53Þ
The third equation, expanded from (19) can be written as:
bGq
bE � q̂û2

2


 �
ûþ û3

bG
2
�
dEþ P
q̂û

" #
ðqR � qLÞ þ �û2bG þ dEþ P

q̂

" #
ðqRuR � qLuLÞ þ ûð1þ bGÞðER � ELÞ

¼ ðER þ PRÞuR � ðEL þ PLÞuL ð54Þ
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We multiply Eq. (53) by -û and add to the second Eq. (54) and obtain a equation as follows:
�ð
dEþ PÞ
q̂

ûðqR � qLÞ þ
ð dEþ PÞ

q̂
ðqRuR � qLuLÞ þ ûðER � ELÞ ¼ �ðPR � PLÞûþ ðER þ PRÞuR � ðEL þ PLÞuL ð55Þ
Re-arranging Eq. (55):
ð dEþ PÞ
q̂

½�ûðqR � qLÞ þ qRuR � qLuL� ¼ �ðER þ PRÞûþ ðER þ PRÞuR þ ðEL þ PLÞû� ðEL þ PLÞuL ð56Þ
Substituting û into the above equation:
ð dEþ PÞbq ½�ð ffiffiffiffiffiqL
p

uL þ
ffiffiffiffiffiffi
qR
p

uRÞð
ffiffiffiffiffiffi
qR
p � ffiffiffiffiffi

qL
p Þ þ qRuR � qLuL�

¼ ðER þ PRÞ �
ð ffiffiffiffiffiqL
p

uL þ
ffiffiffiffiffiffiqR
p

uRÞffiffiffiffiffiqL
p þ ffiffiffiffiffiffiqR

p þ uR

� �
þ ðEL þ PLÞ

ð ffiffiffiffiffiqL
p

uL þ
ffiffiffiffiffiffiqR
p

uRÞffiffiffiffiffiqL
p þ ffiffiffiffiffiffiqR

p � uL

� �

and expanding:
ð dEþ PÞbq ð� ffiffiffiffiffiffi
qR
p ffiffiffiffiffi

qL
p

uL � qRuR þ qLuL þ
ffiffiffiffiffi
qL
p ffiffiffiffiffiffi

qR
p

uR þ qRuR � qLuLÞ

¼ ðER þ PRÞffiffiffiffiffiqL
p þ ffiffiffiffiffiffiqR

p ð�uL
ffiffiffiffiffi
qL
p � uR

ffiffiffiffiffiffi
qR
p þ uR

ffiffiffiffiffi
qL
p þ uR

ffiffiffiffiffiffi
qR
p Þ þ ðEL þ PLÞffiffiffiffiffiqL

p þ ffiffiffiffiffiffiqR
p ðuL

ffiffiffiffiffi
qL
p þ uR

ffiffiffiffiffiffi
qR
p � uL

ffiffiffiffiffi
qL
p � uL

ffiffiffiffiffiffi
qR
p Þ
Introducing q̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiqLqR
p

and canceling the like terms of the above equation:
ð dEþ PÞð�uL þ uRÞ ¼
ðER þ PRÞffiffiffiffiffiqL
p þ ffiffiffiffiffiffiqR

p ð�uL
ffiffiffiffiffi
qL
p þ uR

ffiffiffiffiffi
qL
p Þ þ ðEL þ PLÞffiffiffiffiffiqL

p þ ffiffiffiffiffiffiqR
p ðuR

ffiffiffiffiffiffi
qR
p � uL

ffiffiffiffiffiffi
qR
p Þ ð57Þ
Re-organizing Eq. (57):
ð dEþ PÞðuR � uLÞ ¼ ðuR � uLÞ
½ðER þ PRÞ

ffiffiffiffiffiqL
p þ ðEL þ PLÞ

ffiffiffiffiffiffiqR
p �ffiffiffiffiffiqL

p þ ffiffiffiffiffiffiqR
p ð58Þ
The Roe-averaged state for Eþ P is, if uR–uL:
dEþ P ¼ ðER þ PRÞ
ffiffiffiffiffiqL
p þ ðEL þ PLÞ

ffiffiffiffiffiffiqR
pffiffiffiffiffiqL

p þ ffiffiffiffiffiffiqR
p ð59Þ
This expression is already multiplied by density, and hence it has the switched weight of q for the Roe-average of Eþ P,
which is defined as H the total enthalpy per unit volume of the granular gas. The equality of the third Eq. (54) now holds
with the Roe-averages for density, velocity and total enthalpy per unit volume. And the first equation, expended from Eq.
(19) is identity, which is easy to check. Then we can conclude that (19) is satisfied with the existing algorithm.

Similarly the Eq. (20) gives:
bP
q̂

ûðqR � qLÞ �
bP
q̂
ðqRuR � qLuLÞ �

1
2
PL

qL
uL þ

PR

qR
uR


 �
ðqR � qLÞ þ

1
2
PL

qL
þ PR

qR


 �
ðqRuR � qLuLÞ ¼ 0 ð60Þ
Roe-average for P can be obtained by directly solving Eq. (60) with substitution of the Roe-averages for density and velocity
from Eq. (24):
bPffiffiffiffiffiffiffiffiffiffiffiqLqR

p ð ffiffiffiffiffiqL
p

uLþ
ffiffiffiffiffiffi
qR
p

uRÞð
ffiffiffiffiffiffi
qR
p � ffiffiffiffiffi

qL
p Þ�

bPffiffiffiffiffiffiffiffiffiffiffiqLqR
p ðqRuR�qLuLÞ�

1
2
PL

qL
uLþ
PR

qR
uR


 �
ðqR�qLÞþ

1
2
PL

qL
þPR

qR


 �
ðqRuR�qLuLÞ¼0

ð61Þ
Expanding the above equation:
bPffiffiffiffiffiffiffiffiffiffiffiqLqR
p ð ffiffiffiffiffiffiffiffiffiffiffiqLqR

p
uL þ qRuR � qLuL �

ffiffiffiffiffiffiffiffiffiffiffi
qRqL
p

uR � qRuR þ qLuLÞ

� 1
2
PL

qL
qRuL þ

PR

qR
qRuR �

PL

qL
qLuL �

PR

qR
qLuR �

PL

qL
qRuR �

PR

qR
qRuR þ

PL

qL
qLuL þ

PR

qR
qLuL


 �
¼ 0
After cancellations, we obtain:
bPðuL � uRÞ �
1
2
PL

qL
qRuL �

PR

qR
qLuR �

PL

qL
qRuR þ

PR

qR
qLuL


 �
¼ 0
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Re-arranging the above equation, we have:
bPðuL � uRÞ ¼
1
2
PL

qR

qL
ðuL � uRÞ þ

1
2
PR

qL

qR
ðuL � uRÞ ð62Þ
Then bP is directly solved from Eq. (20) if uL–uR. Hence the fact is established that (20) always holds with the present
algorithm.

Now the above Roe-averages ensure the equality of (19) and (20). Finally, the proposed algorithm is consistent with the
associated Rankine–Hugoniot jump relations.
Appendix B. Parameters for the energy-dissipation term

The dependence of key parameters upon the inelasticity, e, roughness coefficient, b and dimensionless rotational moment
of inertia, k were evaluated by Goldshtein & Shapiro (1995) as follows, with the sum of at and ar being constant and equal to
4/3.
at ¼
2
3

1þ a

bþ ða2 þ b2Þ1=2

 !
ð63Þ
where
a ¼ ð1� b2Þ1� k
1þ k

� 1þ e2; b ¼ 2k
1þ b
1þ k


 �2

:

In the case of a uniform sphere, the ranges of the inelasticity coefficient, e, roughness, b and dimensionless rotational mo-
ment of inertia, k are: 0 < e 6 1;�1 6 b 6 1 and k ¼ 0:4.

The inelasticity coefficient, e, is imposed with the following restriction to ensure monotonic dependence of the parame-
ters at and ar on the coefficients e and b.
e P
2k

1þ k
� b

1� k
1þ k


 �1=2

ð64Þ
The other parameters are as follows:
C0 ¼ �
p
2

� �1=2
a3=2

t 1� e2 þ 1� b2

1þ k

 !
kþ ar

at


 �" #
ð65Þ

C1 ¼ kvk=v;C2 ¼ kvc=vþ NðFÞ ð66Þ
with the following coefficients in the above equations:
k ¼ � pat

2

� �1=2
3ð1� e2Þ þ 1� b2

1þ k

 !
3k� 2þ ar

at


 �" #
ð67Þ

v ¼ pat

2

� �1=2 3
4
ð1� e2Þatð3at � arÞ þ

1� b2

1þ k

 !
3
4
½ð3k� 3Þatar þ a2

r � ka2
t � þ 4

g
k

3gat þ 1� g
k

� �
ð2at � arÞ

h i !
ð68Þ

vc ¼ �
3
4
arat½1� NðFÞ� þ 4gat

ð1þ eÞk gþ g
k
� 1

� �ar

at

� �
ð69Þ

vk ¼ �
3
4
atar ð70Þ
where
NðFÞ ¼ 3
2
ð1� eÞ þ 1� b2

1þ k

 !
kþ ar=at

1þ e


 �
ð71Þ
and
g ¼ 1þ b
1þ k


 �
k
2
:

In the limit case of smooth spheres, b ¼ �1, there is no kinetic energy exchange between the translational and rotational
degrees of freedom. In this particular case of perfectly smooth particles at ¼ 4=3;C0 ¼ �ðp=2Þ1=2a3=2

t ð1� e2Þ;C1 ¼ 0, and
C2 ¼ 3=2ð1� eÞ.



8202 H. Kamath, X. Du / Journal of Computational Physics 228 (2009) 8187–8202
References

[1] A. Bermudez, M.E. Vazquez, Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids 23 (1994) 1049–1071.
[2] C.S. Campbell, Rapid granular flows, Ann. Rev. Fluid Mech. 22 (1990) 57–92.
[3] A. Goldshtein, M. Shapiro, Mechanics of collisional motion of granular materials: Part 1. General hydrodynamic equations, J. Fluid Mech. 282 (1995)

75–114.
[4] A. Goldshtein, M. Shapiro, L. Moldavsky, M. Fishman, Mechanics of collisional motion of granular materials: Part 2. Wave propagation through

vibrofluidized granular layers, J. Fluid Mech. 287 (1995) 349–382.
[5] A. Goldshtein, M. Shapiro, C. Gutfinger, Mechanics of collisional motion of granular materials: Part 3. Self-similar shock wave propagation, J. Fluid

Mech. 316 (1996) 29–51.
[6] A. Goldshtein, M. Shapiro, C. Gutfinger, Mechanics of collisional motion of granular materials: Part 4. Expansion wave, J. Fluid Mech. 327 (1996) 117–

138.
[7] H.M. Jaeger, S.R. Nagel, R.P. Behringer, Granular solids, liquids and gases, Rev. Mod. Phys. 68 (1996) 1259–1273.
[8] J.T. Jenkins, M.W. Richman, Grad’s 13-moment system for dense gas of inelastic spheres, Arch. Ration. Mech. Anal. 87 (1985) 355–377.
[9] J.T. Jenkins, M.W. Richman, Kinetic theory for plane flows of a dense gas of identical, rough, inelastic circular discs, Phys. Fluids 28 (1985) 3485–3494.

[10] V. Kamenetsky, A. Goldshtein, M. Shapiro, D. Degani, Evolution of a shock wave in a granular gas, Phys. Fluids 12 (2000) 3036–3049.
[11] M.S. Liou, B. van Leer, J.S. Shuen, Splitting of inviscid fluxes for real gases, J. Comput. Phys. 87 (1990) 1–24.
[12] C.K.K. Lun, S.B. Savage, D.J. Jeffery, N. Chepurniy, Kinetic theories of granular flow: inelastic particles in Couette flow and slightly inelastic particles in a

general flow field, J. Fluid Mech. 140 (1984) 223–256.
[13] C.K.K. Lun, Kinetic theory for granular flow of dense slightly inelastic, slightly rough spheres, J. Fluid Mech. 233 (1991) 539–559.
[14] P.L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys. 43 (1981) 357–372.
[15] P.L. Roe, Upwind differencing schemes for hyperbolic conservation laws with source terms, in: C. Carasso, P.A. Raviart, D. Serre (Eds.), Proceeding of

Conference on Nonlinear Hyperbolic Problems, Lecture Notes in Mathematics, vol. 1270, Springer-Verlag, New York/Berlin, 1986, pp. 41–51.
[16] S. Serna, A. Marquina, Capturing shock waves in inelastic granular gases, J. Comput. Phys. 209 (2005) 787–795.
[17] S. Serna, A. Marquina, Capturing blast waves in granular flow, Comp. & Fluids 36 (2007) 1364–1372.
[18] P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21 (1984) 995–1011.
[19] B. van Leer, On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe, SIAM J. Sci. Statist. Comput. 5 (1984) 1–

20.
[20] R.J. LeVeQue, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002.
[21] M. Renardy, R.C. Rogers, An Introduction to Partial Differential Equations, Springer, New York, 2000.


	A roe-average algorithm for a granular-gas model with non-conservative terms
	Introduction
	Governing equations for compressible granular flows
	Roe’s algorithm for the non-conservative governing equations
	MUSCL-Hancock time-integration procedure
	Results and discussion
	Tests of one-dimensional blast waves
	Tests of one-dimensional granular flows colliding with a wall
	Test 1 without non-divergent term
	Test 2 with non-divergent term


	Conclusion
	Acknowledgments
	Roe-averages for the granular-gas model
	Consistency check in the absence of G
	Derivation of Eq. (25)
	Consistency of the jump conditions with the proposed algorithm

	Parameters for the energy-dissipation term
	References


